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Three-Dimensional Finite-Difference Method for
the Analysis of Microwave-Device Embedding

ANDREAS CHRIST anD HANS L. HARTNAGEL, SENIOR MEMBER, IEEE

Abstract —The embedding of microwave devices is treated by applying
the finite-difference method to three-dimensional shielded structures. A
program package was developed to evaluate electromagnetic fields inside
arbitrary transmission-line connecting structures and to compute the
scattering matrix. The air bridge, the transition through a wall, and the
bond wire are examined as interconnecting structures. Detailed results are
given and discussed regarding the fundamental behavior of embedding.

I. INTRODUCTION

HE EMBEDDING PROBLEM is concerned with the

interconnection of an active semiconductor device,
such as a diode, an FET, or an MIC, with the electrical
surroundings where one considers both electrical and
mechanical aspects. Especially at frequencies up to 100
GHz, with monolithic integrated millimeter-wave circuits,
the design of embedding structures becomes important.
The high permittivity of the semiconductor materials pro-
motes field distortions at such structures. From a mechani-
cal point of view, the handling, the stability, the protection
against environmental factors, and the feasibility of fabri-
cating a device and its connecting structure have to be
considered. They influence the package geometry and
therefore also the electrical characteristics of the active
device.

Embedding is not only significant inside packages, as
often required for protection, but also when these compo-
nents are directly bonded into microstrip or other lines.

Electrically, the embedding can be regarded as the inter-
connection of two or more transmission lines, which may
be waveguides, coaxial lines, dielectric image guides, mi-
crostrip lines, or slotlines, using a connecting structure
(Fig. 1).

This is in general a multiport scattering problem and
can be described by the generalized scattering matrix.

The requirements are a small reflection coefficient and a
linear phase of the transmission coefficient in the frequency
range of interest. A zero point of the reflection coefficient
should be looked for in analog applicaiions where the
relative bandwidth is usually small. For the digital case,
the interconnection has to be broad-band from zero up to
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several gigahertz because of the appearance of harmonics
and to avoid pulse widening.

To describe the electrical behavior, most authors have
used lumped-element circuits. Getsinger divided the
lumped-element circuit into two parts, one representing
the package, the other the mount [1]. The parameters of
some diode packages were measured, and the parameters
for mounting into waveguide, strip, and coaxial line were
calculated using an approximating theory. Bialkowski and
Khan calculated the driving-point impedance for diodes in
waveguides and similar lines [2]. They verified their results
by measurements. Maeda et al. [3] measured all parame-
ters for an embedded laser diode. A general measurement
method without the need of reference packages was pre-
sented by Greiling and Laton [4], but they could not
distinguish the packaging and mounting parts. Their
method was applied to diodes but could also handle other
devices.

The parasitic reactances of two microwave transistor
packages (LID and S2) mounted in microstrip were mea-
sured by Akello et al. [5] using the resonance method. In
particular, the inductance of the bond wires as a function
of wire spacing and number was examined. Typical values
for LID were 0.61 nH to 0.76 nH (one wire). Beneking
presented slightly different values (0.2 nH to 0.5 nH)
obtained by a time-domain measurement technique for
small reactances and susceptances [6].

The available values are mostly based on measurements
and are restricted to some commonly used but special
packages. Although Akello et al. demonstrated an im-
portant influence on the device characteristics, such as
gain and stability factor [5], there has until now been no
fundamental analysis to find well-matched structures.
Therefore, a numerical method able to examine embedding
structures is given in this paper and some of the significant
results are presented here. In general, the geometry of such
structures forces a three-dimensional analysis of the elec-
tromagnetic fields, and the expected frequency range for
microwave applications needs the rigorous numerical solu-
tion of Maxwell’s equations.

However, the numerical methods tested to handle
scattering problems by finding the scattering matrix, a
frequency-domain problem, often exhibit some lack of
generality. The spectral-domain approach [7] can only be
applied to planar structures. The method of moments,
requiring a knowledge of the Green’s function, is practi-
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Fig. 1. General structure under view.

cally applicable to planar structures or inside waveguides
[8]-[11]. Orthogonal expansions in view of mode matching
can be applied to transmission-line connections [12], [13].

The finite-element method allows arbitrary structures
and has been tested by Webb, Maile, and Ferrari {14] and
de Pourcq [15]. They allowed only one propagating mode
far away from the scattering object.

Finally, the finite-difference method is frequently used
for solving the time-dependent Maxwell’s equations [16]
and its eigenvalue problem in connection with both trans-
mission-line characteristics, e.g. [17]-[19], and three-
dimensional cavity resonator problems [17], [18], [20]-[22].
The publications relevant to the following work are given
here. As will be shown, the scattering matrix can be
calculated if the three-dimensional boundary value prob-
lem can be solved. Because the finite-difference method is
a powerful one, it has been selected here. The structure
geometry can be chosen nearly arbitrarily, and filling
materials having arbitrary complex permittivity and per-
meability are allowed. Further, this method has been well
tested in connection with cavity resonator problems. To
the best knowledge of the authors, this method has not
been applied before to the above problem.

Firstly, the evaluation of the scattering matrix and the
basic ideas of the finite-difference method are described.
Then some testing structures are presented. Finally,
numerical results of embedding structures are discussed
and some concluding remarks are added.

II. EVALUATION OF THE SCATTERING MATRIX

Two or more infinitely long, longitudinally homoge-
neous, but in general different, transmission lines are
attached to the connecting structure. The complex gener-
alized scattering matrix S describes the energy exchange
and phase relation between all outgoing modes (b,) and
all incoming modes (a,). It is of infinite order but in
practice is limited to the order » if on any transmission
line only a finite number of modes are considered:

Sll S12
S=|Sy ,  1<k,i<n (1a)
D S
b
S, =— a;, b,: mode amplitudes. (1b)
4 IZkal=0

The indices / and k have to be chosen in such a way

that all » modes under consideration at all transmission .

lines are numbered but no conflicts occur.
When one goes away from the connecting structure, the
energy of the evanescent and complex modes decreases
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exponentially. Therefore the number of modes relevant
within the limits of accuracy also decreases with distance
until finally only propagating modes have to be taken into
account.

The basic principle used here to obtain the scattering
matrix is as follows. The scattering matrix can be calcu-
lated if an orthogonal decomposition of the electrical field
is known at two neighboring planes-—one pair on each
transmission line—and if it is known for a sufficient
number of linear independent exitations on these transmis-
sion lines.

Therefore, the electric field is required. For its numerical
calculation, both the connecting structure and the in-
finitely long transmission lines are first shielded by an
envelope. Then, each transmission line and the envelope
around it are cut at cross-sectional planes p. This means
that a boundary value problem is built up and that the
electric field inside is uniquely determined if the transverse
electric field is known on the whole surface.

_ At the cross-sectional planes, the transverse electric field
E!P) is given by superposing all normalized transmission-
line modes with mode-amplitude sums w?):

"

() = (P).

Etp - Z wlp Et(zp)’
=1

n{2),: number of modes taken
into account at plane p.

2

The transverse-mode fields E;(,P ) are normalized and satisfy
the orthogonality relation [23]

[EP < Apad=3, (3)
where 8, is the Kronecker symbol, and E(?’ and ﬁ,‘f’ are
mode fields, in general complex. This is important if higher
modes and /or different transmission lines are considered.

At the envelope, i.e., at all other parts of the surface, the
transverse electric field is assumed to equal zero. This is
similar to most practical microwave applications where the
circuits are shielded by a metal.

The mode amplitudes a, and b, are determined if the
boundary value problem has been solved. for this, the
orthogonality relation (3) is applied at two neighboring
planes cutting the longitudinal transmission-line axis at z,
and z,+ A, |A,| being their separation. Thus, one obtains
the following mode-amplitude sums w;:

[Edz,)x HPdA'=a,(z,) +b(z,) =w(z,) (42)
A
_/‘E—‘;(ZP-FAZ)X‘F-I-)I(IP)M: al(ZP+AZ)
A
+bi(zP+Az)=w,(zp+Az). (4b)

Usually, one of the two neighboring planes is identical to
the cross-sectional plane p. Therefore, w,(z,) = w'? and
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is known because its value is given. Now the relations
= Lo FTYP-A,
al(zp+AZ)__al(Zp) €

=bl(zp).eiy,“” A,

(5a)

b(z,+A4,) (5b)
are used to eliminate a,(z,+4,) and b,(z,+A,) in (4b)
and to obtain the mode amplitudes a,(z,) and b/(z,).
Here, v/#) are the propagation constants of the transmis-
sion-line modes being considered. Their sign has to be
chosen depending on whether the + z direction goes
toward or away from the connecting structure.

In order to fully evaluate the generalized scattering
matrix of order n,n solutions of the boundary value
problem with linearly independent boundary conditions
are necessary, ie., different E, (P) at the cross-sectional
planes p. The reason for this is that the scattering matrix is
composed of n-n complex coefficients; thus, the same
number of complex equations has to be built up. Based on
the solution of one boundary value problem, one equation
is extracted for every outgoing mode, combining its ampli-
tude with those of all incoming modes; this means that n
(linear, complex) equations are found. Therefore, n-n/n
= p different boundary value problems have to be solved.

II1. FINITE-DIFFERENCE METHOD

The basic ideas of the finite-difference method are de-
scribed here as applied to the solution of the boundary
value problem and the calculation of the scattering matrix.

The bounded region is divided into elementary cells by
using a three-dimensional nonequidistant Cartesian grid
along which it is cut. Therefore, the bounded region is a
rectangular box in its simplest case. The electric field
components are defined at the central points of the corre-
sponding edges of the elementary cells, i.e., the E,com-
ponent at an edge parallel to the x axis, etc. The magnetic
field components are defined at the central points of the
corresponding surfaces of the elementary cells, but per-
pendicular to the surfaces. This builds up a dual grid
(Fig. 2) [16], [18].

Because a rigorous full-wave treatment is necessary at
high frequencies, Maxwell’s equations are used. To obtain
a linear equation system for the defined field components,
their integral form in the frequency domain is applied:

%Sﬁ-df=ijeE-dI+LJj~cL‘f (6a)

¢E-ds=

and the fields are approximated by three-dimensional step
functions. The defined H field components in the discrete
region are expressed by the surrounding E field by apply-
ing (6b) to the surfaces of the elementary cells. The same
can be done with the E field components using the dual
grid and taking the current source J into account (6a).
The elimination of the H field components leads to a set

- fjwp.]-_f- dA’ (6b)
4
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Fig. 2. Elementary cell of the finite-difference method.
of linear equations [18] where every E,,, is a functlon Jng
of 12 neighboring E field components E

E =

mq mgq

1<k<12

( Emk Ik ) ? (7)

m, m,: number of cell
79 € {x,»,2}.
The Maxwell equations

-

dA=0

by,

S~

(8a)

€

-

dA=0

T

©

SN

(8b)

are satisfied using the grid mentioned above for all defined
components [18]. The cells are filled with €, u,, and may
have a conducting property «,. Tensors for €,,p, are
allowed as far as the main axes are parallel to the coordi-
nate axes [18]. Every cell can be divided into two half cells
by a diagonal plane to get a better approximation of the
material boundaries inside and of the envelope [19].

The set of equations which one obtains if all electric
field components inside and on the boundary are consid-
ered can be written as an inhomogeneous system of linear
equations:

—

M-e=b (9a)
M=M(e d,, o) (9b)

m’p‘m’xm7

where d, is the grid distance, w=27f is the angular
frequency, and M is a sparse but not symmetric matrix
describing the structure. If well designed, its dimension is
three times the number of elementary cells, but only 25
diagonals contain values different from zero. Here, &' is a
vector with all electric field components inside and some
on the boundary, and & is the vector containing the values
of the sources inside and the transverse field components
on the boundary. These transverse field components are
calculated as described in Section II.

After having solved the linear system of equations (9a),
the electric field is used to calculate the mode amplitudes.
In this application, the neighboring planes are placed at
the distance of one grid step. One of them is the cross-sec-
tional plane which is a boundary of the region.

Finally, the system of linear equations involved with the
scattering-matrix coefficients is solved by a standard
routine.
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Fig. 3. Data transfer in the program package F3D.

IV. IMPLEMENTATION

The program package F3D divided into four logical
blocks has been implemented (Fig. 3). F3EDIT allows the
construction and changing of 3-D structures in an interac-
tive manner. It also has the ability to prepare and change
the control data for F2SOLV and F3SOLV. To calculate
the propagation constants v{P) and the transverse electric
mode fields E,(," ) of the (in general) transverse inhomoge-
neous transmission lines, F2SOLYV has to be called up. It
also applies to the finite-difference method as basically
described in {18] but contains a standard eigenvalue solver
finding all propagation constants and a Gauss elimination
procedure with pivot searching on a section of the main
diagonal for determination of Ej £(?) ynder consideration.
The fields are normalized using (3) in its discrete form.

The kernel of the program package, F3SOLV, mainly
contains the evaluation procedure of the matrix M, the
linear-equation solver, and the algorithm to determine the
scattering matrix. As linear-equation solver, several itera-
tive methods are available in the program package LIN-
SOL [24], specially implemented for large sparse asymmet-
rical matrices stored in a diagonal manner. Having the best
convergence behavior for the application presented, the
biconjugate gradient method [25] was used. The version of
F3SOLV implemented has some restrictions due to pro-
gramming simplification. The filling material has to be
isotropic and source free. Also, losses are not allowed to
reduce the complex inhomogeneous system (9a) to a real
one. Therefore, the electric field ins_)ide is real if real
boundary conditions are forced; i.e., E is a summation of
standing waves and evanescent fields. Further, the elemen-
tary cells cannot be divided into half cells and the trans-
mission lines are connected at opposite sides. These restric-
tions are chosen in considering the applications for which
the program is intended. They are not basic restrictions.

The mode-amplitude sums of interesting modes can be
stored by numerical decomposition of the evaluated fields
along longitudinal homogeneous parts of the structure
(4a). This makes it possible to examine the excitation of
modes near scattering regions. The S-matrix algorithm is
called up after a sufficient number of runs have been
executed with different boundary values.

Some plotting- routines are added to draw transverse
mode fields and their propagation constants, mode-ampli-
tude sums, and scattering coefficients.

Because of the large number of elementary cells neces-
sary to build up a three-dimensional structure and there-
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TABLE 1
CPU TiME OF F3SOLV FOR THE SCATTERING MATRIX CALCULATION
AT ONE FREQUENCY POINT

Number of :
Structure Fig. elgmentary.cells Number of CP[(I)ft 1me
vertical X horizontal ~ equations  picny
X longitudinal
Partially
filled 4 6Xx10x 84 15120 20s
coaxial equidistant grid
line
Dielectric
scattering 6 5X10x 88 13200 16s
obstacle; nonequidistant grid
d=08a
Dielectric
wall; 10 8x10x92 22080 56s
€., =98 nonequidistant grid
d=127-a
Bond wire; 17 10x 12X 96 34560 1745
d=127-a nonequidistant grid

fore because of the large number of linear equations which
have to be solved, F3SOLV was implemented on a vector
computer, the CYBER 205. Some typical elementary cell
numbers and computing times are given in Table I for
several of the structures examined here.

V. TESTING STRUCTURES

To estimate the accuracy of the method described, several
structures have been considered.

Regarding longitudinally homogeneous structures, the
error of the phase of the transmission coefficient increases
linearly with the structural length, normalized to the wave-
length, and quadratically with the grid distances in the
longitudinal direction, also normalized to the wavelength.
The error of the magnitude of the reflection coefficient
shows a more complicated, but basically similar, behavior.

Regarding single transversal or longitudinal material
boundaries, the error depends on the grid used in its
neighborhood. The observed values of the error of the
magnitude were A|S;;| < 0.015 by comparison with a finer
grid net.

To give a further idea of the accuracy, some plots which
compare the results with those of other methods are given.
In the following plots, the magnitude of the reflection
coefficient, |Sy,|, is plotted via the normalized frequency
a-ky=a-27f \e,ny, with a being the length-normaliza-
tion constant. Because of the losslessriess of the structures,
the magnitudes of the other S-matrix coefficients con-

tain no further information (|S,| = |Sul; 1812l = Sl

=y1—1S|*). All structure dimensions are also normal-
ized to a.

Fig. 5 shows |S};| of a coaxial line partially but trans-
verse homogeneously filled with a dielectric (¢, =9) (Fig.
4). The dotted line represents the exact values obtained by
analytical considerations. The agreement is very good,
indicating the correctness of the chosen method.

A dielectric scattering obstacle placed in a waveguide
was examined by Katzier [13], who applied the mode-
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Fig. 4. Rectangular coaxial line partially filled with a dielectric.

10

L.O \\
\J
ISyl / \
04 \\ /
02

O'GC .0 0.05 0.1 0.15 0.2 0.25 03
a-kg
Fig. 5. Magnitude of the reflection coefficient |S;;| of the structure of

Fig. 4. — finite-difference method. ----- analytical calculations.
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Fig. 6. Dielectric scattering obstacle in a waveguide.

matching method using orthogonal expansions. This has
been recalculated with the technique described in this
paper (Fig. 6). The curves show a good matching of both
methods (Fig. 7). Those of [13] are slightly shifted to
higher frequencies (Aak, <3 percent). Katzier used 12
eigenwaves in the waveguide region and six in the scatter-
ing obstacle region.

The last testing run presented compares the data of a
waveguide to a shielded dielectric image-guide connection
[13] (Fig. 8). In the examined range of frequency, the
results are also satisfactory (Fig. 9). The ripple at the high
end of the frequencies is caused by too coarse a grid
distance in the longitudinal direction.

Only one, the basic mode, had to be considered at the
cross-sectional planes because these are far enough away
from the connecting structure and their lateral dimensions
were chosen such that higher modes are evanescent.

The large number of elementary cells in the longitudinal
direction could be decreased by including higher modes in
the S-matrix calculation because it becomes possible to
place the cross-sectional planes nearer to the connecting
structure. However, its accuracy has not yet been tested.
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Fig. 8. Waveguide to a shielded dielectric image-guide connection.
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Fig. 9. Magnitude of the reflection coefficient |S,,] of the structure of
Fig. 8 for different ¢,. —— finite-difference method. ----- method of
orthogonal expansions [13].

VI

The interconnection of two microstrip lines, each one on
a GaAs chip, has been modeled by an air bridge, by a
transition” through a dielectric wall (Fig. 10), and by a
bond wire (Fig. 17). The magnitude of the S, coefficient
and some mode-amplitude sums are plotted. The height of
the substrate of the microstrip line is assumed to be 100

NUMERICAL RESULTS
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Fig. 10. Interconnection of two microstrip lines by an air bridge and by
a transition through a wall, respectively.
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Fig. 11. Magnitude of the reflection coefficiént |S11] of the structure of
Fig. 10 with d =3.17-4.

pm, and the conductor dimensions are assumed to be 100
pmX20 pm (a =100 pm). The nonnormalized frequency
range is therefore from 6.0 GHz to 143 GHz. It has to be
pointed out that other values of the length-normalization
constant lead to other frequency ranges (e.g. a = 0.63 mm:
0.95 GHz < f < 22.7 GHz). Also, other substrate materials
(e.g. InP) or other dimensions could be chosen for compu-
tational runs. \

To estimate the accuracy, a microstrip line equal to that
shown in Fig. 10 was examined. Its length was equal to
that of the longest air bridge structure (/ = 36.5-a) and the
same grid was used. The maximum of the phase error of
the transmission coefficient was A(€Sy ). =11.3° and
the maximum of the error of the magnitude of the reflec-
tion coefficient was A|S;| . = 0.0067.

Here also, only the basic mode had to be considered, as
pointed out at the end of the previous section.

First, the connection via an air bridge (e,, =1.0) or
through a dielectric wall (e,,, >1.0) is examined for differ-
ent lengths and thicknesses d (Figs. 11-13). Its nonnor-
malized values are 4 = 0.317 mm, 0.635 mm, and 1.27 mm.
The passing of a conductor through a wall is necessary if
the device has to be encapsulated. A typical organic dielec-
tric (e,, = 2.32), quartz glass (e, =3.78), and ceramics
(A1,0;,, €,,, = 9.8) are selected as wall materials.

For small a-k, or small d,|S,;| decreases significantly
with an increase of the wall permittivity from e,, =1.0 to
9.8. This is due to improvement of the matching of the
wall to the microstrip lines. Their effective permittivity as
a function of frequency was calculated by F2SOLYV to be

d=6.35-a
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0.2 // | \\ / \-‘
5.8 /
%5 /o.os 0.1\0;/ 0.2 025 \/
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Fig. 12. Magnitude of the reflection coefficient [S11| of the structure of
Fig. 10 with d =6.35-a.
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Fig. 13. Magnitude of the reflection coefficient |Sy;| of the structure of
Fig. 10 with d =12.7-a. '

)ereff (a-ky)=75"---9.8. Therefore, particularly for

ceramics, the wall is well matched. In contrast, using an air
bridge, |S},| rises to about 0.8 for a worst case. Also, |Sy]
increases for higher permittivity than ceramics.

At high frequencies, two different resonance effects can
be observed. The first exhibits a zero reflection characteris-
tic, |S;;] = 0, the second exhibits a zero transfer character-
istic, |Sy|=0. In both cases, the structure has to be
regarded as a resonator.

The first resonance effect is caused by the destructive
interference of the reflected waves at the two microstrip
wall planes and has a bandpass-filter property. Its reso-
nance frequencies depend strongly on ¢,,, and d; they are
decreasing if €,, or d is increasing. Further, they are
shifted to lower values as compared with an unconnected
resonator (e.g., d =12.7-a,¢,,=1.0: a kg 1o unconnected,1 =
0.248, a-kg .., =0.238). This is due to the distortion of
the electromagnetic fields at the microstrip wall planes,
with the result of the excitation of higher, evanescent
modes at both sides. Fig. 14 shows the decomposition of
the transverse electric field via the normalized length z of
the structure in the case of excitation with equal mode
amplitudes at both ends and at the resonance frequency.
The mode-amplitude sums of the first and second mode in
the regions A, B, and C of the structure are plotted. It can
be observed that the half-wavelength of mode B1 is greater
than d except if it would be without field distortion.
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The second resonance effect has the property of a band-
stop filter (e.g., d =3.17-a,¢,, = 9.8, a -k, .= 0.243). The
decomposition of the transverse electric field at the reso-
nance frequency (Fig. 15) shows that the second mode in
the wall region (B2) has propagation properties. The field
energy is mainly stored in this mode, indicating that the
resonance frequency depends on this mode. Being a wave-
guide mode, it is sensitive to the actual transverse box
sizes, i.e., the longer one. In the case under consideration,
the resonance frequency is shifted to a-k, ., =0.189 for
broadening the box from b=5-a to b=7-a. But an
increase in d cannot shift it below the cutoff frequency of
the second mode. Notice that the transverse electric field
patterns of the second modes in the different regions (A2,
resp., C2 and B2) are different. In the vicinity of the
resonance frequency, the phase of §;, is changed by 180°,
and the phase of S,; by 360°.

Both resonance effects can be observed for large d and
high e, (Fig. 13). This is the reason for the very sharp
increase of |Sy,| (e.g., d =12.7-a,¢,,=9.8, a -k, = 0.23).

At high frequencies, near but below the cutoff frequency
of higher order modes in the connecting structure, their
attenuation constant becomes small. Especially for small
d, these higher modes contribute to the energy transport
(Fig. 16) and influence the electrical behavior. This is
obvious by comparing the shape of the |S| curves with
that of the first testing structure (Fig. 5).
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The computed results of the interconnection by a bond
wire (Fig. 17) are plotted in Fig. 18. |S},|is still higher than
that of an air bridge. This is due to a higher inductivity of
a small bond wire as compared to a broad conductor
bridge. Therefore, the characteristic impedance is higher
than that of the air bridge, which itself is higher than that
of the microstrip line, meaning deteriorated matching.

A modeling of the electrical behavior of the connecting
structures by a T lumped-element circuit with two longitu-
dinal inductance of L/2 and a transverse capacitance of C
gives quantitative agreement and allows a comparison with
measured data given in the literature [5], [6]. The lumped-
element values were obtained by optimal fitting of the S);
curves (real and imaginary part) in the frequency range
0.02 < a-k, < 0.075 using the Levenberg—Marquardt
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method. The characteristic impedance of the microstrip
line was numerically calculated to be Z; =33 Q. The
inductances obtained for d =12.7-a,¢,,=1.0 were L, .4
= (.70 nH, which is in good agreement with the literature
and Ly;4,. = 0.40 nH. The capacitances, Cy,,q = 0.039 pF
and Cy,q,. = 0.041 pF, depend strongly on the frequencies
under consideration. With the values given, the fitting is
good for small frequencies but not applicable at resonance
frequencies.

The bandpass-filter effect appears also using a bond
wire, but the resonance frequencies are shifted to lower
values as compared with the air bridge.

VIL

Three structures were considered in order to intercon-
nect two devices in microstrip technology. A bond wire
causes the highest reflections even with relatively low
frequencies because of its high inductivity. For a distance
of d =1.27 mm, half the energy is reflected (|S;|> = 0.5) at
a frequency f =18.6 GHz.

Therefore, a bond wire is reasonable only for low fre-
quencies. Using an air bridge, this frequency rises to
f=36.3 GHz for the same distance. To further increase
this, d has to be chosen as small as technologically possi-
ble.

Still lower reflections are obtained by a transition
through a dielectric wall. This is in any case necessary if
the device has to be protected against environmental fac-
tors or shielded by metal to suppress radiation or protect
against electromagnetic perturbations. Then the conductor
has to pass through a dielectric of the type used for coaxial
line. By selecting the dielectric, a good matching of the
structures is possible; for GaAs microstrip lines, the best
material is alumina. To avoid higher propagating modes in
the wall, which cause high reflections, the lateral dimen-
sions have to be small. In the case of good matching, the
distance d is only of little importance but influences the
transverse parasitic capacitance. It rises with 4 and ¢,

For digital applications where small |S;;| and a linear
phase for a large frequency range starting at zero are
required, the use of short alumina coaxial line connections
with small lateral sizes is proposed. ‘

On the other hand, analog applications are mostly of
small bandwidth. For frequencies in connection with miili-
meter-wave circuits, it could then be of advantage to use
the first resonance effect (|S;;| = 0). By choosing ¢,, and
d, its resonance frequency can be shifted to the frequency
of interest. Care must be exercised in view of the frequency
shifting caused by the evanescent modes and of the depen-
dance of the half bandwidth upon the parameters ¢,,, and
d. The technological problem of the required accuracy of d
would then be of importance.

CONCLUSIONS FOR DESIGN
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