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Three-Dimensional Finite-Difference Method for
the Analysis of Microwave-Device Embedding

ANDREAS CHRIST AND HANS L. HARTNAGEL, SENIOR MEMBER, IEEE

,4bstract —The embedding of microwave devices is treated by applying

the finite-difference method to three-dimensional shielded structures. A

program package was developed to evaluate electromagnetic fields inside

arbitrary transmission-line connecting structures and to compute the

scattering matrix. The air bridge, the transition through a wall, and the

bond wire are examined as interconnecting structures. Detailed results are

given and discussed regarding the fundamental behavior of embedding.

I. INTRODUCTION

T HE EMBEDDING PROBLEM is concerned with the

interconnection of an active semiconductor device,

such as a diode, an FET, or an MIC, with the electrical

surroundings where one considers both electrical and

mechanical aspects. Especially at frequencies up to 100

GHz, with monolithic integrated millimeter-wave circuits,

the design of embedding structures becomes important.

The high permittivity of the semiconductor materials pro-

motes field distortions at such structures. From a mechani-

cal point of view, the handling, the stability, the protection

against environmental factors, and the feasibility of fabri-

cating a device and its connecting structure have to be

considered. They influence the package geometry and

therefore also the electrical characteristics of the active

device.

Embedding is not only significant inside packages, as

often required for protection, but also when these compo-

nents are directly bonded into microstrip or other lines.

Electrically, the embedding can be regarded as the inter-

connection of two or more transmission lines, which may

be waveguides, coaxial lines, dielectric image guides, mi-

crostrip lines, or slotlines, using a connecting structure

(Fig. 1).

This is in general a multiport scattering problem and

can be described by the generalized scattering matrix.

The requirements are a small reflection coefficient and a

linear phase of the transmission coefficient in the frequency

range of interest. A zero point of the reflection coefficient

should be looked for in analog applications where the

relative bandwidth is usually small. For the digital case,

the interconnection has to be broad-band from zero up to
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several gigahertz because of the appearance of harmonics

and to avoid pulse widening.

To describe the electrical behavior, most authors have

used lumped-element circuits. Getsinger divided the

lumped-element circuit into two parts, one representing

the package, the other the mount [1]. The parameters of

some diode packages were measured, and the parameters

for mounting into waveguide, strip, and coaxial line were

calculated using an approximating theory. Bialkowski and

Khan calculated the driving-point impedance for diodes in

waveguides and similar lines [2]. They verified their results

by measurements. Maeda et al. [3] measured all parame-

ters for an embedded laser diode. A general measurement

method without the need of reference packages was pre-

sented by Greiling and Laton [4], but they could not

distinguish the packaging and mounting parts. Their

method was applied to diodes but could also handle other

devices.

The parasitic reactance of two microwave transistor

packages (LID and S2) mounted in microstrip were mea-

sured by Akello et al. [5] using the resonance method. In

particular, the inductance of the bond wires as a function

of wire spacing and number was examined. Typical values

for LID were 0.61 nH to 0.76 nH (one wire). Beneking

presented slightly different values (0.2 nH to 0.5 nH)

obtained by a time-domain measurement technique for

small reactance and susceptances [6].

The available values are mostly based on measurements

and are restricted to some commonly used but special

packages. Although Akello et al. demonstrated an im-

portant influence on the device characteristics, such as

gain and stability factor [5], there has until now been no

fundamental analysis to find well-matched structures.

Therefore, a numerical method able to examine embedding

structures is given in this paper and some of the significant

results are presented here. In general, the geometry of such

structures forces a three-dimensional analysis of the elec-

tromagnetic fields, and the expected frequency range for

microwave applications needs the rigorous numerical solu-

tion of Maxwell’s equations.

However, the numerical methods tested to handle

scattering problems by finding the scattering matrix, a

frequency-domain problem, often exhibit some lack of

generality. The spectral-domain approach [7] can only be

applied to planar structures. The method of moments,

requiring a knowledge of the Green’s function, is practi-
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Fig. 1. General strncture under view

tally applicable to planar structures or inside waveguides

[8]-[11]. Orthogonal expansions in view of mode matching

can be applied to transmission-line connections [12], [13].

The finite-element method allows arbitrary structures

and has been tested by Webb, Maile, and Ferrari [14] and

de Pourcq [15]. They allowed only one propagating mode

far away from the scattering object.

Finally, the finite-difference method is frequently used

for solving the time-dependent Maxwell’s equations [16]

and its eigenvalue problem in connection with both trans-

mission-line characteristics, e.g. [17] –[19], and three-

dimensional cavity resonator problems [17], [18], [20] -[22].

The publications relevant to the following work are given

here. As will be shown, the scattering matrix can be

calculated if the three-dimensional boundary value prob-

lem can be solved. Because the finite-difference method is

a powerful one, it has been selected here. The structure

geometry can be chosen nearly arbitrarily, and filling

materials having arbitrary complex permittivity and per-

meability are allowed. Further, this method has been well

tested in connection with cavity resonator problems. To

the best knowledge of the authors, this method has not

been applied before to the above problem.

Firstly, the evaluation of the scattering matrix and the

basic ideas of the finite-difference method are described.

Then some testing structures are presented. Finally,

numerical results of embedding structures are discussed

and some concluding remarks are added.

II. EVALUATION OF THE SCATTERING MATRIX

Two or more infinitely long, longitudinally homoge-

neous, but in general different, transmission lines are

attached to the connecting structure. The complex gener-

alized scattering matrix S describes the energy exchange

and phase relation between all outgoing modes ( b~) and

all incoming modes (a ~). It is of infinite order but in

practice is limited to the order n if on any transmission

line only a finite number of modes are considered:

[: )
s S12 ““.11

s = S21 , I<k,l<n (la)

skl

Sk[= ~ al, bk: mode amplitudes. (lb)
al V a,=O

/#k

The indices 1 and k have to be chosen in such a way

that all n modes under consideration at all transmission

lines are numbered but no conflicts occur.

When one goes away from the connecting structure, the

energy of the evanescent and complex modes deereases

exponentially. Therefore the number of modes relevant

within the limits of accuracy also decreases with distance

until finally only propagating modes have to be taken into

account.

The basic principle used here to obtain the scattering

matrix is as follows. The scattering matrix can be calcu-

lated if an orthogonal decomposition of the electrical field

is known at two neighboring planes–– one pair on each

transmission line-and if it is known for a sufficient

number of linear independent excitations on these transmis-

sion lines.

Therefore, the electric field is required. For its numerical

calculation, both the connecting structure and the in-

finitely long transmission lines are first shielded by an

envelope. Then, each transmission line and the envelope

around it are cut at cross-sectional planes p. This means

that a boundary value problem is built up andl that the

electric field inside is uniquely determined if the transverse

electric field is known on the whole surface.

At the cross-sectional planes, the transverse electric field

l?} ~) is given by superposing all normidized trartsmission-

line modes with mode-amplitude sums w}~):

~(mP&

@P) = ~ w/P). ~},P), n ~p~: numlber of modes taken
,=1 into account at plane p.

(2)

The transverse-mode fields ~jlp) are normalized and satisfy

the orthogonality relation [23]

(3)

where ~,, is the Kronecker symbol, and E~~) and H+}jp) are

mode fields, in general complex. This is important if higher

modes and/or different transmission lines are considered.

At the envelope, i.e., at all other parts of the surface, the

transverse electric field is assumed to equal zero. This is

similar to most practical microwave applications where the

circuits are shielded by a metal.

The mode amplitudes al and b, are determined if the

boundary value problem has been solved. for this, the

orthogonality relation (3) is applied at two neighboring

planes cutting the longitudinal transmission-line axis at ZP

and Zp + A,, IA, I being their separation. Thus, one obtains

the following mode-amplitude sums w,:

J-J)~, Zp Xfl$p)ti+= aZ(zp)+bZ(zP) =W, (Zp) (4a)

J( ~, Zp + AZ) x fi}~)fi+= a,(zp + A=)
A

+bi(zP+ Az)=w, (zP+A, ). (4b)

Usually, one of the two neighboring planes is identical to

the cross-sectional plane p. Therefore, WZ(Z,) =’ W}P) and
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is known because its value is given. Now the relations

TY)P].A, (5a)a,(zP+A, )=al(zP). e

b,(zp+Az) =b, (zP). e*y!’)A (5b)

are used to eliminate at(zP + A,) and bl(zP + A,) in (4b)

and to obtain the mode amplitudes a, ( ZP) and b, ( Zp).

Here, y}~j are the propagation constants of the transmis-

sion-line modes being considered. Their sign has to be

chosen depending on whether the + z direction goes

toward or away from the connecting structure.

In order to fully evaluate the generalized scattering

matrix of order n, n solutions of the boundary value

problem with linearly indepen~ent boundary conditions

are necessary, i.e., different E}P) at the cross-sectional

planes p. The reason for this is that the scattering matrix is

composed of n. n complex coefficients: thus, the same

number of complex equations has to be built up. Based on

the solution of one boundary value problem, one equation

is extracted for every outgoing mode, combining its ampli-

tude with those of all incoming modes; this means that n

(linear, complex) equations are found. Therefore, n. n/n

= n different boundary value problems have to be solved.

III. FINITE-DIFFERENCE METHOD

The basic ideas of the finite-difference method are de-

scribed here as applied to the solution of the boundary

value problem and the calculation of the scattering matrix.

The bounded region is divided into elementary cells by

using a three-dimensional nonequidistant Cartesian grid

along which it is cut. Therefore, the bounded region is a

rectangular box in its simplest case. The electric field

components are defined at the central points of the corre-

sponding edges of the elementary cells, i.e., the EMX com-

ponent at an edge parallel to the x axis, etc. The magnetic

field components are defined at the central points of the

corresponding surfaces of the elementary cells, but per-

pendicular to the surfaces. This builds up a dual grid

(Fig. 2) [16], [18].

Because a rigorous full-wave treatment is necessary at

high frequencies, Maxwell’s equations are used. To obtain

a linear equation system for the defined field components,

their integral form in the frequency domain is applied:

and the fields are appro~mated by three-dimensional step

functions. The defined H field componen~s in the discrete

region are expressed by the surrounding E field by apply-

ing (6b) to the surfaces of the elementary cells. The same

can be done with the ~ field components using the dual

grid and taking the cur~nt source ~ into account (6a).

The elimination of the H field components leads to a set

x

k
z

Y

Fig. 2.
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Elementary cell of the finite-difference method.

of linear equations ~18] where every E~~ is a function fm~

of 12 neighboring E field components E~,~,:

Em,= fmq(%, j, l<k<12 (7)

m, m ~: number of cell

q>qk={x>Y, z}.

The Maxwell equations

are satisfied using the grid mentioned above for all defined

components [18]. The cells are filled with c~, p ~ and may

have a conducting property Km. Tensors for cm, pm are

allowed as far as the main axes are parallel to the coordi-

nate axes [18]. Every cell can be divided into two half cells

by a diagonal plane to get a better approximation of the

material boundaries inside and of the envelope [19].

The set of equations which one obtains if all electric

field components inside and on the boundary are consid-

ered can be written as an inhomogeneous system of linear

equations:

where d~ is the grid distance, u = 2 nf is the angular

frequency, and M is a sparse but not symmetric matrix

describing the structure. If well designed, its dimension is

three times the number of elementary cells, but only 25

diagonals contain values different from zero. Here, Z is a

vector with all electric field components inside and some

on the boundary, and ~ is the vector containing the values

of the sources inside and the transverse field components

on the boundary. These transverse field components are

calculated as described in Section II.

After having solved the linear system of equations (9a),

the electric field is used to calculate the mode amplitudes.
In this application, the neighboring planes are placed at

the distance of one grid step. One of them is the cross-sec-

tional plane which is a boundary of the region.

Finally, the system of linear equations involved with the

scattering-matrix coefficients is solved by a standard

routine.
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Fig. 3. Data transfer in the program package F3D.

IV. IMPLEMENTATION

The program package F3D divided into four logical

blocks has been implemented (Fig. 3). F3EDIT allows the

construction and changing of 3-D structures in an interac-

tive manner. It also has the ability to prepare and change

the control data for F2SOLV and F3SOLV. To calculate

the propagati~n constants yjp) and the transverse electric

mode fields E~ZP)of the (in general) transverse inhomoge-

neous transmission lines, F2SOLV has to be called up. It

also applies to the finite-difference method as basically

described in [18] but contains a standard eigenvalue solver

finding all propagation constants and a Gauss elimination

procedure with pivot searching ~n a section of the main

diagonal for determination of .E~) under consideration.

The fields are normalized using (3) in its discrete form.

The kernel of the program package, F3SOLV, mainly

contains the evaluation procedure of the matrix M, the

linear-equation solver, and the algorithm to determine the

scattering matrix. As linear-equation solver, several itera-

tive methods are available in the program package LIN-

SOL [24], specially implemented for large sparse asymmet-

rical matrices stored in a diagonal manner. Having the best

convergence behavior for the application presented, the

biconjugate gradient method [25] was used. The version of

F3SOLV implemented has some restrictions due to pro-

gramming simplification. The filling material has to be

isotropic and source free. Also, losses are not allowed to

reduce the complex inhomogeneous system (9a) to a real

one. Therefore, the electric field inside is real if real

boundary conditions are forced; i.e., ~ is a summation of

standing waves and evanescent fields. Further, the elemen-

tary cells cannot be divided into half cells and the trans-

mission lines are connected at opposite sides. These restric-

tions are chosen in considering the applications for which

the program is intended. They are not basic restrictions.

The mode-amplitude sums of interesting modes can be

stored by numerical decomposition of the evaluated fields

along longitudinal homogeneous parts of the structure

(4a). This makes it possible to examine the excitation of

modes near scattering regions. The S-matrix algorithm is

called up after a sufficient number of runs have been

executed with different boundary values.

Some plotting- routines are added to draw transverse

mode fields and their propagation constants, mode-ampli-

tude sums, and scattering coefficients.

Because of the large number of elementary cells neces-

sary to build up a three-dimensional structure and there-

TABLE I

CPU TIME OF F3SOLV FOR THE SCATTERING MATRIX CALCULATION
AT ONEFREQUENCYPOINT

Number of CPU time

Structure Fig.
elementary cells Number of of

vertical x horizontal equations

X longitudinal
F3SOLV

Partiatly
filled 4 6x1OX84 15120 20 s
coaxiat equidistant grid
line

Dielectric

scattering 6 5x1OX88 13200 16 S

obstacle; nonequidistant grid

d= 0.8. a

Dielectric
wall; 10 8x1OX92 22080 56 S

~w = 98 nonequidistant grid

d=12.7a
Bond wire; 17 10x12x96 34560 174 s

d=12.7. u nonequidistant grid

fore because of the large number of linear equations which

have to be solved, F3SOLV was imtiemented cm a vector
L

computer, the CYBER 205. Some typical

numbers and computing times are given

several of the structures examined here.

V. TESTING STRUCTIJRES

elementary cell

in Table I for

To estimate the accuracy of the method described, several

structures have been considered.

Regarding longitudinally homogeneous structures, the

error of the phase of the transmission coefficient increases

linearly with the structural length, normalized to the wave-

length, and quadratically with the grid distances in the

longitudinal direction, also normalized to the wavelength.

The error of the magnitude of the reflection coefficient

shows a more complicated, but basically similar, behavior.

Regarding single transversal or longitudinal material

boundaries, the error depends on the grid used in its

neighborhood. The observed values of the error of the

magnitude were AIS1ll<0.015 by comparison with a finer

grid net.

To give a further idea of the accuracy, some plots which

compare the results with those of other methods are given.

In the following plots, the magnitude of the reflection

coefficient, 1S1l 1, is plotted via the normalized frequency

a. k. = a. 2 nf. m, with a being the length-normaliza-

tion constant. Because of the losslessness of the structures,

the magnitudes of the other S-matrix coefficients con-

tain no further information ( IS’Z21= IS’III; 1S121= IL%I

= ~1- 1S’,,12). All structure dimensions me also normal-

ized to a.
Fig. 5 shows ISIII of a coaxial line partially but trans-

verse homogeneously filled with a dielectric (c, = 9) (Fig.

4). The dotted line represents the exact values obtained by

analytical considerations. The agreement is very good,

indicating the correctness of the chosen method.

A dielectric scattering obstacle placed in a waveguide

was examined by Katzier [13], who applied the mode-
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Fig. 5. Magnitude of the reflection coefficient lSII 1of the structure of

Fig. 4. — finite-difference method. ----- analytical calculations.

11601a

0.399a

I I

0.556a 0.888a 0.556a
Fig. 6. Dielectric scattering obstacle in a waveguide.

matching method using orthogonal expansions. This has

been recalculated with the technique described in this

paper (Fig. 6). The curves show a good matching of both

methods (Fig. 7). Those of [13] are slightly shifted to

higher frequencies (AakO <3 percent). Katzier used 12

eigenwaves in the waveguide region and six in the scatter-

ing obstacle region.

The last testing run presented compares the data of a

waveguide to a shielded dielectric image-guide connection

[13] (Fig. 8). In the examined range of frequency, the
results are also satisfactory (Fig. 9). The ripple at the high

end of the frequencies is caused by too coarse a grid

distance in the longitudinal direction.

Only one, the basic mode, had to be considered at the

cross-sectional planes because these are far enough away

from the connecting structure and their lateral dimensions

were chosen such that higher modes are evanescent.

The large number of elementary cells in the longitudinal

direction could be decreased by including higher modes in

the S-matrix calculation because it becomes possible to

place the cross-sectional planes nearer to the connecting

structure. However, its accuracy has not yet been tested.

Fig. 7. Magnitude of the reflection coefficient lSll 1of the structure of

Fig. 6 for different obstacle length d. — finite-difference method.

----- method of orthogonal expansions [13].

[

0.601a

0.399a
sp.8 Oa

t- 1
0.556a (1880a 0.556a

Fig. 8. Waveguide to a shielded dielectric image-guide connection.

I
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,
\
I

0.5- ‘!

\

0.2-

0.1 ~
1.5 1.7 1.9 2.1 2.3 2.5 2.7

a-k. —

Fig. 9, Magnitude of the reflection coefficient 1Sll 1of the structure of

Fig. 8 for different c,. — finite-difference method. ----- method of

orthogonal expansions [13].

VI. NUMERICAL RESULTS

The interconnection of two microstrip lines, each one on

a GaAs chip, has been modeled by an air bridge, by a

transition” through a dielectric wall (Fig. 10), and by a

bond wire (Fig. 17). The magnitude of the Sll coefficient

and some mode-amplitude sums are plotted. The height of

the substrate of the microstrip line is assumed to be 100
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I2a

o.2a
a

Fig. 10. Interconnection of two microstrip lines by an air bridge and by

a transition through a wall, respectively.

1.0 1
d.3.17. a

0.s.

1s,,1

f16 / ~

0.4-

a2

0.0 do
0.05 0.1 0.15 az 1125 0.3

a.ko —

Fig. 11. Magnitude of the reflection coefficient ISII I of the structure of

Fig. 10 with d = 3.17. a.

pm, and the conductor dimensions are assumed to be 100

pm x 20 ~m (a =100 pm). The nonnormalized frequency

range is therefore from 6.0 GHz to 143 GHz. It has to be

pointed out that other values of the length-normalization

constant lead to other frequency ranges (e.g. u = 0.63 mm:

0.95 GHz < f <22.7 GHz). Also, other substrate materials

(e.g. InP) or other dimensions could be chosen for compu-

tational runs.

To estimate the accuracy, a microstrip line equal to that

shown in Fig. 10 was examined. Its length was equal to

that of the longest air bridge structure (1 = 36.5. U) and the

same grid was used. The maximum of the phase error of

the transmission coefficient was A(xSJ ~= = 11.3° and

the maximum of the error of the magnitude of the reflec-

tion coefficient was AIS1lIma = 0.006’7.
Here also, only the basic mode had to be considered, as

pointed out at the end of the previous section.

First, the connection via an air bridge (c,W = 1.0) or

through a dielectric wall (c,W > 1.0) is examined for differ-

ent lengths and thicknesses d (Figs. 11 –13). Its nonnor-

malized values are d = 0.317 mm, 0.635 mm, and 1.27 mm.

The passing of a conductor through a wall is necessary if

the device has to be encapsulated. A typical organic dielec-

tric (c,W = 2.32), quartz glass (6,W = 3.78), and ceramics
(Al 203, (,W = 9.8) are selected as wall materials.

For small a. kO or small d, ISlll decreases significantly

with an increase of the wall permittivity from 6,W=1.0 to

9.8. This is due to improvement of the matching of the

wall to the microstrip lines. Their effective permittivity as

a function of frequency was calculated by F2SOLV to be

I

a.ko —

Fig. 12. Magnitude of ‘the reflection coefficient ISll I of the structure of
Fig. 10 with d = 6.35. a.

d,12.7. a

o.&

I s,,!

0.6

0.4-
// — \

3.78
/

I lx- -N \/v / “--
p- 98

0.O.,O M-’vwiLm
0.05 0.1 0.15 0.2 0.2s 0.3

a.ko —

Fig. 13. Magnitude of the reflection coefficient ISII I of the structure of
Fig. 10 with d =12.7. (z.

e,eff (a. ko) = 7.5 ““” 9.8. Therefore, particularly for

ceramics, the wall is well matched. In contrast, using an air

bridge, ISIII rises to about 0.8 for a worst case. Also, ISIII

increases for higher permittivity than ceramics.

At high frequencies, two different resonance effects can

be observed. The first exhibits a zero reflection characteris-

tic, IS’lll = O, the second exhibits a ze]ro transfer character-

istic, IS21I = O. In both cases, the structure has to be

regarded as a resonator.

The first’ resonance effect is caused by the destructive

interference of the reflected waves at the two rnicrostrip

wall planes and has a bandpass-filttx property. Its reso-

nance frequencies depend strongly on c,W and d; they are

decreasing if C,W or d is increasing. Further, they are

shifted to lower values as compared with an unconnected

resonator (e.g., d =12.7” a, 6,W=1.0: a” ko,,.,, ~nCOm,C~.d,l=

0.248, a oko,,e,,l = 0.238). This is due to the distortion of

the electromagnetic fields at the microstrip wall planes,

with the result of the excitation of higher, evanescent

modes at both sides. Fig. 14 shows the decomposition of

the transverse electric field via the normalized length z of

the structure in the case of excitation with equal mode

amplitudes at both ends and at the resonance frequency.

The mode-amplitude sums of the first and second mode in

the regions A, B, and C of the structure are plotted. It can

be observed that the half-wavelength of mode B1 is greater

than d except if it would be without field distortion.
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Fig. 14 Normalized mode-amplitude sums w, \wmu, with z the longi-
tudinal structure axis.
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Fig, 15. Normalized mode-amplitude sums w, /wm=.

The second resonance effect has the property of a band-

stop filter (e.g., d = 3.17. a, E,W= 9.8, a okO:,,, = 0.243). The

decomposition of the transverse electric field at the reso-

nance frequency (Fig. 15) shows that the second mode in

the wall region (B2) has propagation properties. The field

energy is mainly stored in this mode, indicating that the

resonance frequency depends on this mode. Being a wave-

guide mode, it is sensitive to the actual transverse box

sizes, i.e., the longer one. In the case under consideration,

the resonance frequency is shifted to a” ko, ,., = 0.189 for

broadening the box from b =5. u to b =7. a. But an

increase in d cannot shift it below the cutoff frequency of

the second mode. Notice that the transverse electric field

patterns of the second modes in the different regions (A2,

resp., C2 and B2) are different. In the vicinity of the

resonance frequency, the phase of S’ll is changed by 180°,

and the phase of Szl by 360°.

Both resonance effects can be observed for large d and

high C,W,(Fig. 13). This is the reason for the very sharp

increase of ISIII (e.g., d =12.7” a, c,,. = 9.8, a” kO = 0.23).
At high frequencies, near but below the cutoff frequency

of higher order modes in the connecting structure, their

attenuation constant becomes small. Especially for small

d, these higher modes contribute to the energy transport

(Fig. 16) and influence the electrical behavior. This is

obvious by comparing the shape of the ISll I curves with

that of the first testing structure (Fig. 5).

li.9 15.1

d =3.17. a

Erw ❑ 1.0

ak@O.28h

,0
z—

Fig. 16. Normalized mode-amplitude sums w,/ Wmm

2a 0.2a 2a f\,9~ -
I

O.&a0.4a

Fig, 17. Interconnection of two mlcrostrip lines by a bond wire.
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Fig. 18. Magnitude of the reflection coefficient ],SII ] of the structure of
Fig, 17.

The computed results of the interconnection by a bond

wire (Fig. 17) are plotted in Fig. 18. ISll I is still higher than

that of an air bridge. This is due to a higher inductivity of
a small bond wire as compared to a broad conductor

bridge. Therefore, the characteristic impedance is higher

than that of the air bridge, which itself is higher than that

of the microstrip line, meaning deteriorated matching.

A modeling of the electrical behavior of the connecting

structures by a T lumped-element circuit with two longitu-

dinal inductance of L/2 and a transverse capacitance of C

gives quantitative agreement and allows a comparison with

measured data given in the literature [5], [6]. The lumped-

element values were obtained by optimal fitting of the Sll

curves (real and imaginary part) in the frequency range

0.02< a . k. <0.075 using the Levenberg-Marquardt.
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method. The characteristic impedance of the microstrip

line was numerically calculated to be Z~ = 33 il. The

inductances obtained for d =12.7” a, C,W= 1.0 were L~O.~

= 0.70 nH, which is in good agreement with the literature

and L ~n~~e= 0.40 nH. The capacitances, C~O~~= 0.039 pF

and Cbridge = 0.041 pF, depend strongly on the frequencies

under consideration. With the values given, the fitting is

good for small frequencies but not applicable at resonance

frequencies.

The bandpass-filter effect appears also using a bond

wire, but the resonance frequencies are shifted to lower

values as compared with the air bridge.

VII. CONCLUSIONS FOR DESIGN

Three structures were considered in order to intercon-

nect two devices in microstrip technology. A bond wire

causes the highest reflections even with relatively low

frequencies because of its high inductivity. For a distance

of d = 1.27 mm, half the energy is reflected (I Sll 12= 0.5) at

a frequency ~ = 18.6 GHz.

Therefore, a bond wire is reasonable only for low fre-

quencies. Using an air bridge, this frequency rises to

~ = 36.3 GHz for the same distance. To further increase

this, d has to be chosen as small as technologically possi-

ble.

Still lower reflections are obtained by a transition

through a dielectric wall. This is in any case necessary if

the device has to be protected against environmental fac-

tors or shielded by metal to suppress radiation or protect

against electromagnetic perturbations. Then the conductor

has to pass through a dielectric of the type used for coaxial

line. By selecting the dielectric, a good matching of the

structures is possible; for GaAs microstrip lines, the best

material is alumina. To avoid higher propagating modes in

the wall, which cause high reflections, the lateral dimen-

sions have to be small. In the case of good matching, the

distance d is only of little importance but influences the

transverse parasitic capacitance. It rises with d and c,W.

For digital applications where small ISlll and a linear

phase for a large frequency range starting at zero are

required, the use of short alumina coaxial line connections

with small lateral sizes is proposed.

On the other hand, analog applications are mostly of

small bandwidth. For frequencies in connection with milli-

meter-wave circuits, it could then be of advantage to use

the first resonance effect (I Sll[ = O). By choosing (7W and

d, its resonance frequency can be shifted to the frequency

of interest. Care must be exercised in view of the frequency

shifting caused by the evanescent modes and of the depen-

dence of the half bandwidth upon the parameters (,W and

d. The technological problem of the required accuracy of d

would then be of importance.
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